

Liquid-Cooled Charge Air Coolers

Improve Fuel Economy

Without Sacrificing Performance

OEMs seeking smaller, more fuel-efficient engines that still pack a powerful punch can rely on Dana's customized liquid-cooled charge air coolers, which maximize cooling while helping to reduce turbo lag by as much as 75 percent.

Ideal for both gasoline and diesel engines, liquid-cooled charge air coolers help engines deliver more power and torque at lower vehicle speeds and throughout the operating range – requiring 25 percent less package space and offering 10 percent greater heat rejection than competing coolers.*

With deep expertise and problem-solving ability in thermal-management applications, Dana provides solutions for turbocharged and supercharged vehicles that are customized to exact OEM needs.

Customized Cooling Solutions

Fused together via Dana's proprietary fluxless brazing process, our stacked plate technology – plus air and coolant side enhancements – ensure that drivers feel an immediate response when accelerating. With heat transfer efficiency approaching 100 percent, liquid-cooled charge air coolers bring greater durability and reduced emissions to engines in light, commercial, and off-highway vehicle applications.

Unlike air-to-air coolers that are often packaged in front of the radiator, this technology is available in several configurations that can be packaged anywhere within the engine compartment, including:

Dana.com/light-vehicles

Application Policy

Capacity ratings, features, and specifications vary depending upon the model and type of service. Application approvals must be obtained from Dana; contact your representative for application approval. We reserve the right to change or modify our product specifications, configurations, or dimensions at any time without notice.

^{*}Per 2015 model year application

^{**}Dependent upon competitive model and configuration